Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Adaptive Bayesian Linear Regression for Automated Machine Learning (1904.00577v2)

Published 1 Apr 2019 in cs.LG and stat.ML

Abstract: To solve a machine learning problem, one typically needs to perform data preprocessing, modeling, and hyperparameter tuning, which is known as model selection and hyperparameter optimization.The goal of automated machine learning (AutoML) is to design methods that can automatically perform model selection and hyperparameter optimization without human interventions for a given dataset. In this paper, we propose a meta-learning method that can search for a high-performance machine learning pipeline from the predefined set of candidate pipelines for supervised classification datasets in an efficient way by leveraging meta-data collected from previous experiments. More specifically, our method combines an adaptive Bayesian regression model with a neural network basis function and the acquisition function from Bayesian optimization. The adaptive Bayesian regression model is able to capture knowledge from previous meta-data and thus make predictions of the performances of machine learning pipelines on a new dataset. The acquisition function is then used to guide the search of possible pipelines based on the predictions.The experiments demonstrate that our approach can quickly identify high-performance pipelines for a range of test datasets and outperforms the baseline methods.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.