Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Elaboration Tolerant Representation of Markov Decision Process via Decision-Theoretic Extension of Probabilistic Action Language pBC+ (1904.00512v2)

Published 1 Apr 2019 in cs.AI

Abstract: We extend probabilistic action language pBC+ with the notion of utility as in decision theory. The semantics of the extended pBC+ can be defined as a shorthand notation for a decision-theoretic extension of the probabilistic answer set programming language LPMLN. Alternatively, the semantics of pBC+ can also be defined in terms of Markov Decision Process (MDP), which in turn allows for representing MDP in a succinct and elaboration tolerant way as well as to leverage an MDP solver to compute pBC+. The idea led to the design of the system pbcplus2mdp, which can find an optimal policy of a pBC+ action description using an MDP solver. This paper is under consideration in Theory and Practice of Logic Programming (TPLP).

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube