Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Two-phase flow regime prediction using LSTM based deep recurrent neural network (1904.00291v1)

Published 30 Mar 2019 in cs.CV, physics.app-ph, physics.data-an, and physics.flu-dyn

Abstract: Long short-term memory (LSTM) and recurrent neural network (RNN) has achieved great successes on time-series prediction. In this paper, a methodology of using LSTM-based deep-RNN for two-phase flow regime prediction is proposed, motivated by previous research on constructing deep RNN. The method is featured with fast response and accuracy. The built RNN networks are trained and tested with time-series void fraction data collected using impedance void meter. The result shows that the prediction accuracy depends on the depth of network and the number of layer cells. However, deeper and larger network consumes more time in predicting.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.