Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Two-phase flow regime prediction using LSTM based deep recurrent neural network (1904.00291v1)

Published 30 Mar 2019 in cs.CV, physics.app-ph, physics.data-an, and physics.flu-dyn

Abstract: Long short-term memory (LSTM) and recurrent neural network (RNN) has achieved great successes on time-series prediction. In this paper, a methodology of using LSTM-based deep-RNN for two-phase flow regime prediction is proposed, motivated by previous research on constructing deep RNN. The method is featured with fast response and accuracy. The built RNN networks are trained and tested with time-series void fraction data collected using impedance void meter. The result shows that the prediction accuracy depends on the depth of network and the number of layer cells. However, deeper and larger network consumes more time in predicting.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube