Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evaluating CNNs on the Gestalt Principle of Closure (1904.00285v1)

Published 30 Mar 2019 in cs.CV

Abstract: Deep convolutional neural networks (CNNs) are widely known for their outstanding performance in classification and regression tasks over high-dimensional data. This made them a popular and powerful tool for a large variety of applications in industry and academia. Recent publications show that seemingly easy classifaction tasks (for humans) can be very challenging for state of the art CNNs. An attempt to describe how humans perceive visual elements is given by the Gestalt principles. In this paper we evaluate AlexNet and GoogLeNet regarding their performance on classifying the correctness of the well known Kanizsa triangles, which heavily rely on the Gestalt principle of closure. Therefore we created various datasets containing valid as well as invalid variants of the Kanizsa triangle. Our findings suggest that perceiving objects by utilizing the principle of closure is very challenging for the applied network architectures but they appear to adapt to the effect of closure.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.