Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Nearly Minimax-Optimal Regret for Linearly Parameterized Bandits (1904.00242v2)

Published 30 Mar 2019 in stat.ML and cs.LG

Abstract: We study the linear contextual bandit problem with finite action sets. When the problem dimension is $d$, the time horizon is $T$, and there are $n \leq 2{d/2}$ candidate actions per time period, we (1) show that the minimax expected regret is $\Omega(\sqrt{dT (\log T) (\log n)})$ for every algorithm, and (2) introduce a Variable-Confidence-Level (VCL) SupLinUCB algorithm whose regret matches the lower bound up to iterated logarithmic factors. Our algorithmic result saves two $\sqrt{\log T}$ factors from previous analysis, and our information-theoretical lower bound also improves previous results by one $\sqrt{\log T}$ factor, revealing a regret scaling quite different from classical multi-armed bandits in which no logarithmic $T$ term is present in minimax regret. Our proof techniques include variable confidence levels and a careful analysis of layer sizes of SupLinUCB on the upper bound side, and delicately constructed adversarial sequences showing the tightness of elliptical potential lemmas on the lower bound side.

Citations (51)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube