Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

RefineLoc: Iterative Refinement for Weakly-Supervised Action Localization (1904.00227v3)

Published 30 Mar 2019 in cs.CV

Abstract: Video action detectors are usually trained using datasets with fully-supervised temporal annotations. Building such datasets is an expensive task. To alleviate this problem, recent methods have tried to leverage weak labeling, where videos are untrimmed and only a video-level label is available. In this paper, we propose RefineLoc, a novel weakly-supervised temporal action localization method. RefineLoc uses an iterative refinement approach by estimating and training on snippet-level pseudo ground truth at every iteration. We show the benefit of this iterative approach and present an extensive analysis of five different pseudo ground truth generators. We show the effectiveness of our model on two standard action datasets, ActivityNet v1.2 and THUMOS14. RefineLoc shows competitive results with the state-of-the-art in weakly-supervised temporal localization. Additionally, our iterative refinement process is able to significantly improve the performance of two state-of-the-art methods, setting a new state-of-the-art on THUMOS14.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.