Papers
Topics
Authors
Recent
2000 character limit reached

Boundary Aware Multi-Focus Image Fusion Using Deep Neural Network (1904.00198v1)

Published 30 Mar 2019 in cs.CV

Abstract: Since it is usually difficult to capture an all-in-focus image of a 3D scene directly, various multi-focus image fusion methods are employed to generate it from several images focusing at different depths. However, the performance of existing methods is barely satisfactory and often degrades for areas near the focused/defocused boundary (FDB). In this paper, a boundary aware method using deep neural network is proposed to overcome this problem. (1) Aiming to acquire improved fusion images, a 2-channel deep network is proposed to better extract the relative defocus information of the two source images. (2) After analyzing the different situations for patches far away from and near the FDB, we use two networks to handle them respectively. (3) To simulate the reality more precisely, a new approach of dataset generation is designed. Experiments demonstrate that the proposed method outperforms the state-of-the-art methods, both qualitatively and quantitatively.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.