Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FO = FO3 for linear orders with monotone binary relations (1904.00189v1)

Published 30 Mar 2019 in cs.LO

Abstract: We show that over the class of linear orders with additional binary relations satisfying some monotonicity conditions, monadic first-order logic has the three-variable property. This generalizes (and gives a new proof of) several known results, including the fact that monadic first-order logic has the three-variable property over linear orders, as well as over (R,<,+1), and answers some open questions mentioned in a paper from Antonopoulos, Hunter, Raza and Worrell [FoSSaCS 2015]. Our proof is based on a translation of monadic first-order logic formulas into formulas of a star-free variant of Propositional Dynamic Logic, which are in turn easily expressible in monadic first-order logic with three variables.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Marie Fortin (13 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.