FO = FO3 for linear orders with monotone binary relations (1904.00189v1)
Abstract: We show that over the class of linear orders with additional binary relations satisfying some monotonicity conditions, monadic first-order logic has the three-variable property. This generalizes (and gives a new proof of) several known results, including the fact that monadic first-order logic has the three-variable property over linear orders, as well as over (R,<,+1), and answers some open questions mentioned in a paper from Antonopoulos, Hunter, Raza and Worrell [FoSSaCS 2015]. Our proof is based on a translation of monadic first-order logic formulas into formulas of a star-free variant of Propositional Dynamic Logic, which are in turn easily expressible in monadic first-order logic with three variables.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.