Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An LBP-HOG Descriptor Based on Matrix Projection For Mammogram Classification (1904.00187v4)

Published 30 Mar 2019 in cs.CV

Abstract: In image based feature descriptor design, local information from image patches are extracted using iterative scanning operations which cause high computational costs. In order to avoid such scanning operations, we present matrix multiplication based local feature descriptors, namely a Matrix projection based Local Binary Pattern (M-LBP) descriptor and a Matrix projection based Histogram of Oriented Gradients (M-HOG) descriptor. Additionally, an integrated formulation of M-LBP and M-HOG (M-LBP-HOG) is also proposed to perform the two descriptors together in a single step. The proposed descriptors are evaluated using a publicly available mammogram database. The results show promising performances in terms of classification accuracy and computational efficiency.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube