Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Brain Tissue Segmentation Using NeuroNet With Different Pre-processing Techniques (1904.00068v1)

Published 29 Mar 2019 in cs.CV

Abstract: Automatic segmentation of brain Magnetic Resonance Imaging (MRI) images is one of the vital steps for quantitative analysis of brain for further inspection. In this paper, NeuroNet has been adopted to segment the brain tissues (white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF)) which uses Residual Network (ResNet) in encoder and Fully Convolution Network (FCN) in the decoder. To achieve the best performance, various hyper-parameters have been tuned, while, network parameters (kernel and bias) were initialized using the NeuroNet pre-trained model. Different pre-processing pipelines have also been introduced to get a robust trained model. The model has been trained and tested on IBSR18 data-set. To validate the research outcome, performance was measured quantitatively using Dice Similarity Coefficient (DSC) and is reported on average as 0.84 for CSF, 0.94 for GM, and 0.94 for WM. The outcome of the research indicates that for the IBSR18 data-set, pre-processing and proper tuning of hyper-parameters for NeuroNet model have improvement in DSC for the brain tissue segmentation.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.