Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Relational Representations with Auto-encoding Logic Programs (1903.12577v2)

Published 29 Mar 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Deep learning methods capable of handling relational data have proliferated over the last years. In contrast to traditional relational learning methods that leverage first-order logic for representing such data, these deep learning methods aim at re-representing symbolic relational data in Euclidean spaces. They offer better scalability, but can only numerically approximate relational structures and are less flexible in terms of reasoning tasks supported. This paper introduces a novel framework for relational representation learning that combines the best of both worlds. This framework, inspired by the auto-encoding principle, uses first-order logic as a data representation language, and the mapping between the original and latent representation is done by means of logic programs instead of neural networks. We show how learning can be cast as a constraint optimisation problem for which existing solvers can be used. The use of logic as a representation language makes the proposed framework more accurate (as the representation is exact, rather than approximate), more flexible, and more interpretable than deep learning methods. We experimentally show that these latent representations are indeed beneficial in relational learning tasks.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.