Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Data Detection for MIMO Systems with One-Bit ADCs: A Reinforcement Learning Approach (1903.12546v1)

Published 29 Mar 2019 in eess.SP, cs.IT, cs.LG, and math.IT

Abstract: The use of one-bit analog-to-digital converters (ADCs) at a receiver is a power-efficient solution for future wireless systems operating with a large signal bandwidth and/or a massive number of receive radio frequency chains. This solution, however, induces a high channel estimation error and therefore makes it difficult to perform the optimal data detection that requires perfect knowledge of likelihood functions at the receiver. In this paper, we propose a likelihood function learning method for multiple-input multiple-output (MIMO) systems with one-bit ADCs using a reinforcement learning approach. The key idea is to exploit input-output samples obtained from data detection, to compensate the mismatch in the likelihood function. The underlying difficulty of this idea is a label uncertainty in the samples caused by a data detection error. To resolve this problem, we define a Markov decision process (MDP) to maximize the accuracy of the likelihood function learned from the samples. We then develop a reinforcement learning algorithm that efficiently finds the optimal policy by approximating the transition function and the optimal state of the MDP. Simulation results demonstrate that the proposed method provides significant performance gains for the optimal data detection methods that suffer from the mismatch in the likelihood function.

Citations (59)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.