Papers
Topics
Authors
Recent
2000 character limit reached

Robust Data Detection for MIMO Systems with One-Bit ADCs: A Reinforcement Learning Approach (1903.12546v1)

Published 29 Mar 2019 in eess.SP, cs.IT, cs.LG, and math.IT

Abstract: The use of one-bit analog-to-digital converters (ADCs) at a receiver is a power-efficient solution for future wireless systems operating with a large signal bandwidth and/or a massive number of receive radio frequency chains. This solution, however, induces a high channel estimation error and therefore makes it difficult to perform the optimal data detection that requires perfect knowledge of likelihood functions at the receiver. In this paper, we propose a likelihood function learning method for multiple-input multiple-output (MIMO) systems with one-bit ADCs using a reinforcement learning approach. The key idea is to exploit input-output samples obtained from data detection, to compensate the mismatch in the likelihood function. The underlying difficulty of this idea is a label uncertainty in the samples caused by a data detection error. To resolve this problem, we define a Markov decision process (MDP) to maximize the accuracy of the likelihood function learned from the samples. We then develop a reinforcement learning algorithm that efficiently finds the optimal policy by approximating the transition function and the optimal state of the MDP. Simulation results demonstrate that the proposed method provides significant performance gains for the optimal data detection methods that suffer from the mismatch in the likelihood function.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.