Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Real-Time Wideband Neural Vocoder at 1.6 kb/s Using LPCNet (1903.12087v2)

Published 28 Mar 2019 in eess.AS, cs.LG, and cs.SD

Abstract: Neural speech synthesis algorithms are a promising new approach for coding speech at very low bitrate. They have so far demonstrated quality that far exceeds traditional vocoders, at the cost of very high complexity. In this work, we present a low-bitrate neural vocoder based on the LPCNet model. The use of linear prediction and sparse recurrent networks makes it possible to achieve real-time operation on general-purpose hardware. We demonstrate that LPCNet operating at 1.6 kb/s achieves significantly higher quality than MELP and that uncompressed LPCNet can exceed the quality of a waveform codec operating at low bitrate. This opens the way for new codec designs based on neural synthesis models.

Citations (76)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.