Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DDoS Attack Detection Method Based on Network Abnormal Behavior in Big Data Environment (1903.11844v1)

Published 28 Mar 2019 in cs.CR

Abstract: Distributed denial of service (DDoS) attack becomes a rapidly growing problem with the fast development of the Internet. The existing DDoS attack detection methods have time-delay and low detection rate. This paper presents a DDoS attack detection method based on network abnormal behavior in a big data environment. Based on the characteristics of flood attack, the method filters the network flows to leave only the 'many-to-one' network flows to reduce the interference from normal network flows and improve the detection accuracy. We define the network abnormal feature value (NAFV) to reflect the state changes of the old and new IP address of 'many-to-one' network flows. Finally, the DDoS attack detection method based on NAFV real-time series is built to identify the abnormal network flow states caused by DDoS attacks. The experiments show that compared with similar methods, this method has higher detection rate, lower false alarm rate and missing rate.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.