Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Feature Fusion Encoder Decoder Network For Automatic Liver Lesion Segmentation (1903.11834v1)

Published 28 Mar 2019 in cs.CV and cs.LG

Abstract: Liver lesion segmentation is a difficult yet critical task for medical image analysis. Recently, deep learning based image segmentation methods have achieved promising performance, which can be divided into three categories: 2D, 2.5D and 3D, based on the dimensionality of the models. However, 2.5D and 3D methods can have very high complexity and 2D methods may not perform satisfactorily. To obtain competitive performance with low complexity, in this paper, we propose a Feature-fusion Encoder-Decoder Network (FED-Net) based 2D segmentation model to tackle the challenging problem of liver lesion segmentation from CT images. Our feature fusion method is based on the attention mechanism, which fuses high-level features carrying semantic information with low-level features having image details. Additionally, to compensate for the information loss during the upsampling process, a dense upsampling convolution and a residual convolutional structure are proposed. We tested our method on the dataset of MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge and achieved competitive results compared with other state-of-the-art methods.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.