Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Outlier-Robust Spatial Perception: Hardness, General-Purpose Algorithms, and Guarantees (1903.11683v2)

Published 27 Mar 2019 in stat.ML, cs.CV, cs.LG, cs.RO, cs.SY, and stat.AP

Abstract: Spatial perception is the backbone of many robotics applications, and spans a broad range of research problems, including localization and mapping, point cloud alignment, and relative pose estimation from camera images. Robust spatial perception is jeopardized by the presence of incorrect data association, and in general, outliers. Although techniques to handle outliers do exist, they can fail in unpredictable manners (e.g., RANSAC, robust estimators), or can have exponential runtime (e.g., branch-and-bound). In this paper, we advance the state of the art in outlier rejection by making three contributions. First, we show that even a simple linear instance of outlier rejection is inapproximable: in the worst-case one cannot design a quasi-polynomial time algorithm that computes an approximate solution efficiently. Our second contribution is to provide the first per-instance sub-optimality bounds to assess the approximation quality of a given outlier rejection outcome. Our third contribution is to propose a simple general-purpose algorithm, named adaptive trimming, to remove outliers. Our algorithm leverages recently-proposed global solvers that are able to solve outlier-free problems, and iteratively removes measurements with large errors. We demonstrate the proposed algorithm on three spatial perception problems: 3D registration, two-view geometry, and SLAM. The results show that our algorithm outperforms several state-of-the-art methods across applications while being a general-purpose method.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.