Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SLOPE for Sparse Linear Regression:Asymptotics and Optimal Regularization (1903.11582v2)

Published 27 Mar 2019 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: In sparse linear regression, the SLOPE estimator generalizes LASSO by penalizing different coordinates of the estimate according to their magnitudes. In this paper, we present a precise performance characterization of SLOPE in the asymptotic regime where the number of unknown parameters grows in proportion to the number of observations. Our asymptotic characterization enables us to derive the fundamental limits of SLOPE in both estimation and variable selection settings. We also provide a computational feasible way to optimally design the regularizing sequences such that the fundamental limits are reached. In both settings, we show that the optimal design problem can be formulated as certain infinite-dimensional convex optimization problems, which have efficient and accurate finite-dimensional approximations. Numerical simulations verify all our asymptotic predictions. They demonstrate the superiority of our optimal regularizing sequences over other designs used in the existing literature.

Citations (1)

Summary

We haven't generated a summary for this paper yet.