Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A sparse semismooth Newton based proximal majorization-minimization algorithm for nonconvex square-root-loss regression problems (1903.11460v3)

Published 27 Mar 2019 in math.OC, cs.LG, cs.NA, math.NA, stat.CO, and stat.ML

Abstract: In this paper, we consider high-dimensional nonconvex square-root-loss regression problems and introduce a proximal majorization-minimization (PMM) algorithm for these problems. Our key idea for making the proposed PMM to be efficient is to develop a sparse semismooth Newton method to solve the corresponding subproblems. By using the Kurdyka-{\L}ojasiewicz property exhibited in the underlining problems, we prove that the PMM algorithm converges to a d-stationary point. We also analyze the oracle property of the initial subproblem used in our algorithm. Extensive numerical experiments are presented to demonstrate the high efficiency of the proposed PMM algorithm.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.