Do Not Trust Additive Explanations (1903.11420v3)
Abstract: Explainable Artificial Intelligence (XAI)has received a great deal of attention recently. Explainability is being presented as a remedy for the distrust of complex and opaque models. Model agnostic methods such as LIME, SHAP, or Break Down promise instance-level interpretability for any complex machine learning model. But how faithful are these additive explanations? Can we rely on additive explanations for non-additive models? In this paper, we (1) examine the behavior of the most popular instance-level explanations under the presence of interactions, (2) introduce a new method that detects interactions for instance-level explanations, (3) perform a large scale benchmark to see how frequently additive explanations may be misleading.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.