Papers
Topics
Authors
Recent
2000 character limit reached

Do Not Trust Additive Explanations (1903.11420v3)

Published 27 Mar 2019 in cs.LG and stat.ML

Abstract: Explainable Artificial Intelligence (XAI)has received a great deal of attention recently. Explainability is being presented as a remedy for the distrust of complex and opaque models. Model agnostic methods such as LIME, SHAP, or Break Down promise instance-level interpretability for any complex machine learning model. But how faithful are these additive explanations? Can we rely on additive explanations for non-additive models? In this paper, we (1) examine the behavior of the most popular instance-level explanations under the presence of interactions, (2) introduce a new method that detects interactions for instance-level explanations, (3) perform a large scale benchmark to see how frequently additive explanations may be misleading.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.