Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks (1903.11359v2)

Published 27 Mar 2019 in cs.LG, cs.CR, cs.CV, cs.NE, and stat.ML

Abstract: Modern neural networks are highly non-robust against adversarial manipulation. A significant amount of work has been invested in techniques to compute lower bounds on robustness through formal guarantees and to build provably robust models. However, it is still difficult to get guarantees for larger networks or robustness against larger perturbations. Thus attack strategies are needed to provide tight upper bounds on the actual robustness. We significantly improve the randomized gradient-free attack for ReLU networks [9], in particular by scaling it up to large networks. We show that our attack achieves similar or significantly smaller robust accuracy than state-of-the-art attacks like PGD or the one of Carlini and Wagner, thus revealing an overestimation of the robustness by these state-of-the-art methods. Our attack is not based on a gradient descent scheme and in this sense gradient-free, which makes it less sensitive to the choice of hyperparameters as no careful selection of the stepsize is required.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.