Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Chance-Constrained AC Optimal Power Flow -- A Polynomial Chaos Approach (1903.11337v2)

Published 27 Mar 2019 in cs.SY

Abstract: As the share of renewables in the grid increases, the operation of power systems becomes more challenging. The present paper proposes a method to formulate and solve chance-constrained optimal power flow while explicitly considering the full nonlinear AC power flow equations and stochastic uncertainties. We use polynomial chaos expansion to model the effects of arbitrary uncertainties of finite variance, which enables to predict and optimize the system state for a range of operating conditions. We apply chance constraints to limit the probability of violations of inequality constraints. Our method incorporates a more detailed and a more flexible description of both the controllable variables and the resulting system state than previous methods. Two case studies highlight the efficacy of the method, with a focus on satisfaction of the AC power flow equations and on the accurate computation of moments of all random variables.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.