Papers
Topics
Authors
Recent
2000 character limit reached

Auto-Embedding Generative Adversarial Networks for High Resolution Image Synthesis (1903.11250v2)

Published 27 Mar 2019 in cs.CV

Abstract: Generating images via the generative adversarial network (GAN) has attracted much attention recently. However, most of the existing GAN-based methods can only produce low-resolution images of limited quality. Directly generating high-resolution images using GANs is nontrivial, and often produces problematic images with incomplete objects. To address this issue, we develop a novel GAN called Auto-Embedding Generative Adversarial Network (AEGAN), which simultaneously encodes the global structure features and captures the fine-grained details. In our network, we use an autoencoder to learn the intrinsic high-level structure of real images and design a novel denoiser network to provide photo-realistic details for the generated images. In the experiments, we are able to produce 512x512 images of promising quality directly from the input noise. The resultant images exhibit better perceptual photo-realism, i.e., with sharper structure and richer details, than other baselines on several datasets, including Oxford-102 Flowers, Caltech-UCSD Birds (CUB), High-Quality Large-scale CelebFaces Attributes (CelebA-HQ), Large-scale Scene Understanding (LSUN) and ImageNet.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.