Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Designing Succinct Secondary Indexing Mechanism by Exploiting Column Correlations (Extended Version) (1903.11203v2)

Published 27 Mar 2019 in cs.DB

Abstract: Database administrators construct secondary indexes on data tables to accelerate query processing in relational database management systems (RDBMSs). These indexes are built on top of the most frequently queried columns according to the data statistics. Unfortunately, maintaining multiple secondary indexes in the same database can be extremely space consuming, causing significant performance degradation due to the potential exhaustion of memory space. In this paper, we demonstrate that there exist many opportunities to exploit column correlations for accelerating data access. We propose HERMIT, a succinct secondary indexing mechanism for modern RDBMSs. HERMIT judiciously leverages the rich soft functional dependencies hidden among columns to prune out redundant structures for indexed key access. Instead of building a complete index that stores every single entry in the key columns, HERMIT navigates any incoming key access queries to an existing index built on the correlated columns. This is achieved through the Tiered Regression Search Tree (TRS-Tree), a succinct, ML-enhanced data structure that performs fast curve fitting to adaptively and dynamically capture both column correlations and outliers. Our extensive experimental study in two different RDBMSs have confirmed that HERMIT can significantly reduce space consumption with limited performance overhead in terms of query response time and index maintenance time, especially when supporting complex range queries.

Citations (54)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.