Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 68 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 187 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improved robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms applied to ATARI games (1903.11012v3)

Published 26 Mar 2019 in cs.LG, cs.NE, and stat.ML

Abstract: Deep Reinforcement Learning (RL) demonstrates excellent performance on tasks that can be solved by trained policy. It plays a dominant role among cutting-edge machine learning approaches using multi-layer Neural networks (NNs). At the same time, Deep RL suffers from high sensitivity to noisy, incomplete, and misleading input data. Following biological intuition, we involve Spiking Neural Networks (SNNs) to address some deficiencies of deep RL solutions. Previous studies in image classification domain demonstrated that standard NNs (with ReLU nonlinearity) trained using supervised learning can be converted to SNNs with negligible deterioration in performance. In this paper, we extend those conversion results to the domain of Q-Learning NNs trained using RL. We provide a proof of principle of the conversion of standard NN to SNN. In addition, we show that the SNN has improved robustness to occlusion in the input image. Finally, we introduce results with converting full-scale Deep Q-network to SNN, paving the way for future research to robust Deep RL applications.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.