Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Optimize TSK Fuzzy Systems for Regression Problems: Mini-Batch Gradient Descent with Regularization, DropRule and AdaBound (MBGD-RDA) (1903.10951v4)

Published 26 Mar 2019 in cs.LG, cs.AI, cs.NE, and stat.ML

Abstract: Takagi-Sugeno-Kang (TSK) fuzzy systems are very useful machine learning models for regression problems. However, to our knowledge, there has not existed an efficient and effective training algorithm that ensures their generalization performance, and also enables them to deal with big data. Inspired by the connections between TSK fuzzy systems and neural networks, we extend three powerful neural network optimization techniques, i.e., mini-batch gradient descent, regularization, and AdaBound, to TSK fuzzy systems, and also propose three novel techniques (DropRule, DropMF, and DropMembership) specifically for training TSK fuzzy systems. Our final algorithm, mini-batch gradient descent with regularization, DropRule and AdaBound (MBGD-RDA), can achieve fast convergence in training TSK fuzzy systems, and also superior generalization performance in testing. It can be used for training TSK fuzzy systems on datasets of any size; however, it is particularly useful for big datasets, on which currently no other efficient training algorithms exist.

Citations (77)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.