Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Veritatem Dies Aperit- Temporally Consistent Depth Prediction Enabled by a Multi-Task Geometric and Semantic Scene Understanding Approach (1903.10764v2)

Published 26 Mar 2019 in cs.CV

Abstract: Robust geometric and semantic scene understanding is ever more important in many real-world applications such as autonomous driving and robotic navigation. In this paper, we propose a multi-task learning-based approach capable of jointly performing geometric and semantic scene understanding, namely depth prediction (monocular depth estimation and depth completion) and semantic scene segmentation. Within a single temporally constrained recurrent network, our approach uniquely takes advantage of a complex series of skip connections, adversarial training and the temporal constraint of sequential frame recurrence to produce consistent depth and semantic class labels simultaneously. Extensive experimental evaluation demonstrates the efficacy of our approach compared to other contemporary state-of-the-art techniques.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.