Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Defending against Whitebox Adversarial Attacks via Randomized Discretization (1903.10586v1)

Published 25 Mar 2019 in cs.LG, cs.CR, and stat.ML

Abstract: Adversarial perturbations dramatically decrease the accuracy of state-of-the-art image classifiers. In this paper, we propose and analyze a simple and computationally efficient defense strategy: inject random Gaussian noise, discretize each pixel, and then feed the result into any pre-trained classifier. Theoretically, we show that our randomized discretization strategy reduces the KL divergence between original and adversarial inputs, leading to a lower bound on the classification accuracy of any classifier against any (potentially whitebox) $\ell_\infty$-bounded adversarial attack. Empirically, we evaluate our defense on adversarial examples generated by a strong iterative PGD attack. On ImageNet, our defense is more robust than adversarially-trained networks and the winning defenses of the NIPS 2017 Adversarial Attacks & Defenses competition.

Citations (75)

Summary

We haven't generated a summary for this paper yet.