Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Defending against Whitebox Adversarial Attacks via Randomized Discretization (1903.10586v1)

Published 25 Mar 2019 in cs.LG, cs.CR, and stat.ML

Abstract: Adversarial perturbations dramatically decrease the accuracy of state-of-the-art image classifiers. In this paper, we propose and analyze a simple and computationally efficient defense strategy: inject random Gaussian noise, discretize each pixel, and then feed the result into any pre-trained classifier. Theoretically, we show that our randomized discretization strategy reduces the KL divergence between original and adversarial inputs, leading to a lower bound on the classification accuracy of any classifier against any (potentially whitebox) $\ell_\infty$-bounded adversarial attack. Empirically, we evaluate our defense on adversarial examples generated by a strong iterative PGD attack. On ImageNet, our defense is more robust than adversarially-trained networks and the winning defenses of the NIPS 2017 Adversarial Attacks & Defenses competition.

Citations (75)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.