Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness (1903.10484v1)

Published 25 Mar 2019 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Adversarial examples are malicious inputs crafted to cause a model to misclassify them. Their most common instantiation, "perturbation-based" adversarial examples introduce changes to the input that leave its true label unchanged, yet result in a different model prediction. Conversely, "invariance-based" adversarial examples insert changes to the input that leave the model's prediction unaffected despite the underlying input's label having changed. In this paper, we demonstrate that robustness to perturbation-based adversarial examples is not only insufficient for general robustness, but worse, it can also increase vulnerability of the model to invariance-based adversarial examples. In addition to analytical constructions, we empirically study vision classifiers with state-of-the-art robustness to perturbation-based adversaries constrained by an $\ell_p$ norm. We mount attacks that exploit excessive model invariance in directions relevant to the task, which are able to find adversarial examples within the $\ell_p$ ball. In fact, we find that classifiers trained to be $\ell_p$-norm robust are more vulnerable to invariance-based adversarial examples than their undefended counterparts. Excessive invariance is not limited to models trained to be robust to perturbation-based $\ell_p$-norm adversaries. In fact, we argue that the term adversarial example is used to capture a series of model limitations, some of which may not have been discovered yet. Accordingly, we call for a set of precise definitions that taxonomize and address each of these shortcomings in learning.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.