Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Iris R-CNN: Accurate Iris Segmentation in Non-cooperative Environment (1903.10140v1)

Published 25 Mar 2019 in cs.CV

Abstract: Despite the significant advances in iris segmentation, accomplishing accurate iris segmentation in non-cooperative environment remains a grand challenge. In this paper, we present a deep learning framework, referred to as Iris R-CNN, to offer superior accuracy for iris segmentation. The proposed framework is derived from Mask R-CNN, and several novel techniques are proposed to carefully explore the unique characteristics of iris. First, we propose two novel networks: (i) Double-Circle Region Proposal Network (DC-RPN), and (ii) Double-Circle Classification and Regression Network (DC-CRN) to take into account the iris and pupil circles to maximize the accuracy for iris segmentation. Second, we propose a novel normalization scheme for Regions of Interest (RoIs) to facilitate a radically new pooling operation over a double-circle region. Experimental results on two challenging iris databases, UBIRIS.v2 and MICHE, demonstrate the superior accuracy of the proposed approach over other state-of-the-art methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.