Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic denoising autoencoders for retinal optical coherence tomography (1903.09809v1)

Published 23 Mar 2019 in cs.CV

Abstract: Noise in speckle-prone optical coherence tomography tends to obfuscate important details necessary for medical diagnosis. In this paper, a denoising approach that preserves disease characteristics on retinal optical coherence tomography images in ophthalmology is presented. By combining a deep convolutional autoencoder with a priorly trained ResNet image classifier as regularizer, the perceptibility of delicate details is encouraged and only information-less background noise is filtered out. With our approach, higher peak signal-to-noise ratios with $ \mathrm{PSNR} = 31.2\,\mathrm{dB} $ and higher classification accuracy of $\mathrm{ACC} = 85.0\,\%$ can be achieved for denoised images compared to state-of-the-art denoising with $ \mathrm{PSNR} = 29.4\,\mathrm{dB} $ or $\mathrm{ACC} = 70.3\,\%$, depending on the method. It is shown that regularized autoencoders are capable of denoising retinal OCT images without blurring details of diseases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Max-Heinrich Laves (16 papers)
  2. Sontje Ihler (9 papers)
  3. Lüder Alexander Kahrs (1 paper)
  4. Tobias Ortmaier (16 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.