Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Semantic denoising autoencoders for retinal optical coherence tomography (1903.09809v1)

Published 23 Mar 2019 in cs.CV

Abstract: Noise in speckle-prone optical coherence tomography tends to obfuscate important details necessary for medical diagnosis. In this paper, a denoising approach that preserves disease characteristics on retinal optical coherence tomography images in ophthalmology is presented. By combining a deep convolutional autoencoder with a priorly trained ResNet image classifier as regularizer, the perceptibility of delicate details is encouraged and only information-less background noise is filtered out. With our approach, higher peak signal-to-noise ratios with $ \mathrm{PSNR} = 31.2\,\mathrm{dB} $ and higher classification accuracy of $\mathrm{ACC} = 85.0\,\%$ can be achieved for denoised images compared to state-of-the-art denoising with $ \mathrm{PSNR} = 29.4\,\mathrm{dB} $ or $\mathrm{ACC} = 70.3\,\%$, depending on the method. It is shown that regularized autoencoders are capable of denoising retinal OCT images without blurring details of diseases.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.