Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ADMM-IDNN: Iteratively Double-reweighted Nuclear Norm Algorithm for Group-prior based Nonconvex Compressed Sensing via ADMM (1903.09787v4)

Published 23 Mar 2019 in eess.IV

Abstract: Group-prior based regularization method has led to great successes in various image processing tasks, which can usually be considered as a low-rank matrix minimization problem. As a widely used surrogate function of low-rank, the nuclear norm based convex surrogate usually lead to over-shrinking phenomena, since the nuclear norm shrinks the rank components (singular value) simultaneously. In this paper, we propose a novel Group-prior based nonconvex image compressive sensing (CS) reconstruction framework via a family of nonconvex nuclear norms functions which contain common concave and monotonically properties. To solve the resulting nonconvex nuclear norm minimization (NNM) problem, we develop a Group based iteratively double-reweighted nuclear norm algorithm (IDNN) via an alternating direction method of multipliers (ADMM) framework. Our proposed algorithm can convert the nonconvex nuclear norms optimization problem into a double-reweighted singular value thresholding (DSVT) problem. Extensive experiments demonstrate our proposed framework achieved favorable reconstruction performance compared with current state-of-the-art convex methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.