Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TTR-Based Reward for Reinforcement Learning with Implicit Model Priors (1903.09762v3)

Published 23 Mar 2019 in cs.RO

Abstract: Model-free reinforcement learning (RL) is a powerful approach for learning control policies directly from high-dimensional state and observation. However, it tends to be data-inefficient, which is especially costly in robotic learning tasks. On the other hand, optimal control does not require data if the system model is known, but cannot scale to models with high-dimensional states and observations. To exploit benefits of both model-free RL and optimal control, we propose time-to-reach-based (TTR-based) reward shaping, an optimal control-inspired technique to alleviate data inefficiency while retaining advantages of model-free RL. This is achieved by summarizing key system model information using a TTR function to greatly speed up the RL process, as shown in our simulation results. The TTR function is defined as the minimum time required to move from any state to the goal under assumed system dynamics constraints. Since the TTR function is computationally intractable for systems with high-dimensional states, we compute it for approximate, lower-dimensional system models that still captures key dynamic behaviors. Our approach can be flexibly and easily incorporated into any model-free RL algorithm without altering the original algorithm structure, and is compatible with any other techniques that may facilitate the RL process. We evaluate our approach on two representative robotic learning tasks and three well-known model-free RL algorithms, and show significant improvements in data efficiency and performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube