Papers
Topics
Authors
Recent
2000 character limit reached

Graph Temporal Logic Inference for Classification and Identification (1903.09714v1)

Published 22 Mar 2019 in cs.LO

Abstract: Inferring spatial-temporal properties from data is important for many complex systems, such as additive manufacturing systems, swarm robotic systems and biological networks. Such systems can often be modeled as a labeled graph where labels on the nodes and edges represent relevant measurements such as temperatures and distances. We introduce graph temporal logic (GTL) which can express properties such as "whenever a node's label is above 10, for the next 3 time units there are always at least two neighboring nodes with an edge label of at most 2 where the node labels are above 5". This paper is a first attempt to infer spatial (graph) temporal logic formulas from data for classification and identification. For classification, we infer a GTL formula that classifies two sets of graph temporal trajectories with minimal misclassification rate. For identification, we infer a GTL formula that is informative and is satisfied by the graph temporal trajectories in the dataset with high probability. The informativeness of a GTL formula is measured by the information gain with respect to given prior knowledge represented by a prior probability distribution. We implement the proposed approach to classify the graph patterns of tensile specimens built from selective laser sintering (SLS) process with varying strengths, and to identify informative spatial-temporal patterns from experimental data of the SLS cooldown process and simulation data of a swarm of robots.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.