Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Semi-Global Exponential Stability of Augmented Primal-Dual Gradient Dynamics for Constrained Convex Optimization (1903.09580v4)

Published 22 Mar 2019 in math.OC and cs.SY

Abstract: Primal-dual gradient dynamics that find saddle points of a Lagrangian have been widely employed for handling constrained optimization problems. Building on existing methods, we extend the augmented primal-dual gradient dynamics (Aug-PDGD) to incorporate general convex and nonlinear inequality constraints, and we establish its semi-global exponential stability when the objective function is strongly convex. We also provide an example of a strongly convex quadratic program of which the Aug-PDGD fails to achieve global exponential stability. Numerical simulation also suggests that the exponential convergence rate could depend on the initial distance to the KKT point.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.