Papers
Topics
Authors
Recent
2000 character limit reached

A Novel Independent RNN Approach to Classification of Seizures against Non-seizures (1903.09326v1)

Published 22 Mar 2019 in cs.LG and stat.ML

Abstract: In current clinical practices, electroencephalograms (EEG) are reviewed and analyzed by trained neurologists to provide supports for therapeutic decisions. Manual reviews can be laborious and error prone. Automatic and accurate seizure/non-seizure classification methods are desirable. A critical challenge is that seizure morphologies exhibit considerable variabilities. In order to capture essential seizure features, this paper leverages an emerging deep learning model, the independently recurrent neural network (IndRNN), to construct a new approach for the seizure/non-seizure classification. This new approach gradually expands the time scales, thereby extracting temporal and spatial features from the local time duration to the entire record. Evaluations are conducted with cross-validation experiments across subjects over the noisy data of CHB-MIT. Experimental results demonstrate that the proposed approach outperforms the current state-of-the-art methods. In addition, we explore how the segment length affects the classification performance. Thirteen different segment lengths are assessed, showing that the classification performance varies over the segment lengths, and the maximal fluctuating margin is more than 4%. Thus, the segment length is an important factor influencing the classification performance.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.