Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Distributed off-Policy Actor-Critic Reinforcement Learning with Policy Consensus (1903.09255v1)

Published 21 Mar 2019 in cs.LG, cs.AI, math.OC, and stat.ML

Abstract: In this paper, we propose a distributed off-policy actor critic method to solve multi-agent reinforcement learning problems. Specifically, we assume that all agents keep local estimates of the global optimal policy parameter and update their local value function estimates independently. Then, we introduce an additional consensus step to let all the agents asymptotically achieve agreement on the global optimal policy function. The convergence analysis of the proposed algorithm is provided and the effectiveness of the proposed algorithm is validated using a distributed resource allocation example. Compared to relevant distributed actor critic methods, here the agents do not share information about their local tasks, but instead they coordinate to estimate the global policy function.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.