Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Efficient Solution to Non-Minimal Case Essential Matrix Estimation (1903.09067v3)

Published 21 Mar 2019 in cs.CV

Abstract: Finding relative pose between two calibrated images is a fundamental task in computer vision. Given five point correspondences, the classical five-point methods can be used to calculate the essential matrix efficiently. For the case of $N$ ($N > 5$) inlier point correspondences, which is called $N$-point problem, existing methods are either inefficient or prone to local minima. In this paper, we propose a certifiably globally optimal and efficient solver for the $N$-point problem. First we formulate the problem as a quadratically constrained quadratic program (QCQP). Then a certifiably globally optimal solution to this problem is obtained by semidefinite relaxation. This allows us to obtain certifiably globally optimal solutions to the original non-convex QCQPs in polynomial time. The theoretical guarantees of the semidefinite relaxation are also provided, including tightness and local stability. To deal with outliers, we propose a robust $N$-point method using M-estimators. Though global optimality cannot be guaranteed for the overall robust framework, the proposed robust $N$-point method can achieve good performance when the outlier ratio is not high. Extensive experiments on synthetic and real-world datasets demonstrated that our $N$-point method is $2\sim3$ orders of magnitude faster than state-of-the-art methods. Moreover, our robust $N$-point method outperforms state-of-the-art methods in terms of robustness and accuracy.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)