Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Hierarchical Representations of Electronic Health Records for Clinical Outcome Prediction (1903.08652v2)

Published 20 Mar 2019 in cs.LG and stat.ML

Abstract: Clinical outcome prediction based on the Electronic Health Record (EHR) plays a crucial role in improving the quality of healthcare. Conventional deep sequential models fail to capture the rich temporal patterns encoded in the longand irregular clinical event sequences. We make the observation that clinical events at a long time scale exhibit strongtemporal patterns, while events within a short time period tend to be disordered co-occurrence. We thus propose differentiated mechanisms to model clinical events at different time scales. Our model learns hierarchical representationsof event sequences, to adaptively distinguish between short-range and long-range events, and accurately capture coretemporal dependencies. Experimental results on real clinical data show that our model greatly improves over previous state-of-the-art models, achieving AUC scores of 0.94 and 0.90 for predicting death and ICU admission respectively, Our model also successfully identifies important events for different clinical outcome prediction tasks

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.