Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An Efficient Schmidt-EKF for 3D Visual-Inertial SLAM (1903.08636v1)

Published 20 Mar 2019 in cs.CV and cs.RO

Abstract: It holds great implications for practical applications to enable centimeter-accuracy positioning for mobile and wearable sensor systems. In this paper, we propose a novel, high-precision, efficient visual-inertial (VI)-SLAM algorithm, termed Schmidt-EKF VI-SLAM (SEVIS), which optimally fuses IMU measurements and monocular images in a tightly-coupled manner to provide 3D motion tracking with bounded error. In particular, we adapt the Schmidt Kalman filter formulation to selectively include informative features in the state vector while treating them as nuisance parameters (or Schmidt states) once they become matured. This change in modeling allows for significant computational savings by no longer needing to constantly update the Schmidt states (or their covariance), while still allowing the EKF to correctly account for their cross-correlations with the active states. As a result, we achieve linear computational complexity in terms of map size, instead of quadratic as in the standard SLAM systems. In order to fully exploit the map information to bound navigation drifts, we advocate efficient keyframe-aided 2D-to-2D feature matching to find reliable correspondences between current 2D visual measurements and 3D map features. The proposed SEVIS is extensively validated in both simulations and experiments.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube