Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Combinatorial Auctions with Interdependent Valuations: SOS to the Rescue (1903.08384v2)

Published 20 Mar 2019 in cs.GT

Abstract: We study combinatorial auctions with interdependent valuations. In such settings, each agent $i$ has a private signal $s_i$ that captures her private information, and the valuation function of every agent depends on the entire signal profile, ${\bf s}=(s_1,\ldots,s_n)$. The literature in economics shows that the interdependent model gives rise to strong impossibility results, and identifies assumptions under which optimal solutions can be attained. The computer science literature provides approximation results for simple single-parameter settings (mostly single item auctions, or matroid feasibility constraints). Both bodies of literature focus largely on valuations satisfying a technical condition termed {\em single crossing} (or variants thereof). We consider the class of {\em submodular over signals} (SOS) valuations (without imposing any single-crossing type assumption), and provide the first welfare approximation guarantees for multi-dimensional combinatorial auctions, achieved by universally ex-post IC-IR mechanisms. Our main results are: $(i)$ 4-approximation for any single-parameter downward-closed setting with single-dimensional signals and SOS valuations; $(ii)$ 4-approximation for any combinatorial auction with multi-dimensional signals and {\em separable}-SOS valuations; and $(iii)$ $(k+3)$- and $(2\log(k)+4)$-approximation for any combinatorial auction with single-dimensional signals, with $k$-sized signal space, for SOS and strong-SOS valuations, respectively. All of our results extend to a parameterized version of SOS, $d$-SOS, while losing a factor that depends on $d$.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.