Papers
Topics
Authors
Recent
2000 character limit reached

Any Finite Distributive Lattice is Isomorphic to the Minimizer Set of an ${\rm M}^{\natural}$-Concave Set Function (1903.08343v2)

Published 20 Mar 2019 in cs.DM

Abstract: Submodularity is an important concept in combinatorial optimization, and it is often regarded as a discrete analog of convexity. It is a fundamental fact that the set of minimizers of any submodular function forms a distributive lattice. Conversely, it is also known that any finite distributive lattice is isomorphic to the minimizer set of a submodular function, through the celebrated Birkhoff's representation theorem. ${\rm M}{\natural}$-concavity is a key concept in discrete convex analysis. It is known for set functions that the class of ${\rm M}{\natural}$-concavity is a proper subclass of submodularity. Thus, the minimizer set of an ${\rm M}{\natural}$-concave function forms a distributive lattice. It is natural to ask if any finite distributive lattice appears as the minimizer set of an ${\rm M}{\natural}$-concave function. This paper affirmatively answers the question.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.