Papers
Topics
Authors
Recent
2000 character limit reached

Convergence Analysis of Inexact Randomized Iterative Methods (1903.07971v1)

Published 19 Mar 2019 in math.OC, cs.LG, cs.NA, math.NA, and stat.ML

Abstract: In this paper we present a convergence rate analysis of inexact variants of several randomized iterative methods. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic subspace ascent. A common feature of these methods is that in their update rule a certain sub-problem needs to be solved exactly. We relax this requirement by allowing for the sub-problem to be solved inexactly. In particular, we propose and analyze inexact randomized iterative methods for solving three closely related problems: a convex stochastic quadratic optimization problem, a best approximation problem and its dual, a concave quadratic maximization problem. We provide iteration complexity results under several assumptions on the inexactness error. Inexact variants of many popular and some more exotic methods, including randomized block Kaczmarz, randomized Gaussian Kaczmarz and randomized block coordinate descent, can be cast as special cases. Numerical experiments demonstrate the benefits of allowing inexactness.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.