Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

How Hard Is Robust Mean Estimation? (1903.07870v2)

Published 19 Mar 2019 in cs.CC, cs.DS, math.ST, and stat.TH

Abstract: Robust mean estimation is the problem of estimating the mean $\mu \in \mathbb{R}d$ of a $d$-dimensional distribution $D$ from a list of independent samples, an $\epsilon$-fraction of which have been arbitrarily corrupted by a malicious adversary. Recent algorithmic progress has resulted in the first polynomial-time algorithms which achieve \emph{dimension-independent} rates of error: for instance, if $D$ has covariance $I$, in polynomial-time one may find $\hat{\mu}$ with $|\mu - \hat{\mu}| \leq O(\sqrt{\epsilon})$. However, error rates achieved by current polynomial-time algorithms, while dimension-independent, are sub-optimal in many natural settings, such as when $D$ is sub-Gaussian, or has bounded $4$-th moments. In this work we give worst-case complexity-theoretic evidence that improving on the error rates of current polynomial-time algorithms for robust mean estimation may be computationally intractable in natural settings. We show that several natural approaches to improving error rates of current polynomial-time robust mean estimation algorithms would imply efficient algorithms for the small-set expansion problem, refuting Raghavendra and Steurer's small-set expansion hypothesis (so long as $P \neq NP$). We also give the first direct reduction to the robust mean estimation problem, starting from a plausible but nonstandard variant of the small-set expansion problem.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.