How Hard Is Robust Mean Estimation? (1903.07870v2)
Abstract: Robust mean estimation is the problem of estimating the mean $\mu \in \mathbb{R}d$ of a $d$-dimensional distribution $D$ from a list of independent samples, an $\epsilon$-fraction of which have been arbitrarily corrupted by a malicious adversary. Recent algorithmic progress has resulted in the first polynomial-time algorithms which achieve \emph{dimension-independent} rates of error: for instance, if $D$ has covariance $I$, in polynomial-time one may find $\hat{\mu}$ with $|\mu - \hat{\mu}| \leq O(\sqrt{\epsilon})$. However, error rates achieved by current polynomial-time algorithms, while dimension-independent, are sub-optimal in many natural settings, such as when $D$ is sub-Gaussian, or has bounded $4$-th moments. In this work we give worst-case complexity-theoretic evidence that improving on the error rates of current polynomial-time algorithms for robust mean estimation may be computationally intractable in natural settings. We show that several natural approaches to improving error rates of current polynomial-time robust mean estimation algorithms would imply efficient algorithms for the small-set expansion problem, refuting Raghavendra and Steurer's small-set expansion hypothesis (so long as $P \neq NP$). We also give the first direct reduction to the robust mean estimation problem, starting from a plausible but nonstandard variant of the small-set expansion problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.