Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Multilingual Encoding Method for Text Classification and Dialect Identification Using Convolutional Neural Network (1903.07588v1)

Published 18 Mar 2019 in cs.CL and cs.LG

Abstract: This thesis presents a language-independent text classification model by introduced two new encoding methods "BUNOW" and "BUNOC" used for feeding the raw text data into a new CNN spatial architecture with vertical and horizontal convolutional process instead of commonly used methods like one hot vector or word representation (i.e. word2vec) with temporal CNN architecture. The proposed model can be classified as hybrid word-character model in its work methodology because it consumes less memory space by using a fewer neural network parameters as in character level representation, in addition to providing much faster computations with fewer network layers depth, as in word level representation. A promising result achieved compared to state of art models in two different morphological benchmarked dataset one for Arabic language and one for English language.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)