Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Forecasting the Progression of Alzheimer's Disease Using Neural Networks and a Novel Pre-Processing Algorithm (1903.07510v2)

Published 18 Mar 2019 in cs.LG, q-bio.QM, and stat.ML

Abstract: Alzheimer's disease (AD) is the most common neurodegenerative disease in older people. Despite considerable efforts to find a cure for AD, there is a 99.6% failure rate of clinical trials for AD drugs, likely because AD patients cannot easily be identified at early stages. This project investigated machine learning approaches to predict the clinical state of patients in future years to benefit AD research. Clinical data from 1737 patients was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and was processed using the "All-Pairs" technique, a novel methodology created for this project involving the comparison of all possible pairs of temporal data points for each patient. This data was then used to train various machine learning models. Models were evaluated using 7-fold cross-validation on the training dataset and confirmed using data from a separate testing dataset (110 patients). A neural network model was effective (mAUC = 0.866) at predicting the progression of AD on a month-by-month basis, both in patients who were initially cognitively normal and in patients suffering from mild cognitive impairment. Such a model could be used to identify patients at early stages of AD and who are therefore good candidates for clinical trials for AD therapeutics.

Citations (80)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)