Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scene Segmentation-Based Luminance Adjustment for Multi-Exposure Image Fusion (1903.07428v1)

Published 18 Mar 2019 in cs.MM

Abstract: We propose a novel method for adjusting luminance for multi-exposure image fusion. For the adjustment, two novel scene segmentation approaches based on luminance distribution are also proposed. Multi-exposure image fusion is a method for producing images that are expected to be more informative and perceptually appealing than any of the input ones, by directly fusing photos taken with different exposures. However, existing fusion methods often produce unclear fused images when input images do not have a sufficient number of different exposure levels. In this paper, we point out that adjusting the luminance of input images makes it possible to improve the quality of the final fused images. This insight is the basis of the proposed method. The proposed method enables us to produce high-quality images, even when undesirable inputs are given. Visual comparison results show that the proposed method can produce images that clearly represent a whole scene. In addition, multi-exposure image fusion with the proposed method outperforms state-of-the-art fusion methods in terms of MEF-SSIM, discrete entropy, tone mapped image quality index, and statistical naturalness.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.