Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bilateral Cyclic Constraint and Adaptive Regularization for Unsupervised Monocular Depth Prediction (1903.07309v3)

Published 18 Mar 2019 in cs.CV

Abstract: Supervised learning methods to infer (hypothesize) depth of a scene from a single image require costly per-pixel ground-truth. We follow a geometric approach that exploits abundant stereo imagery to learn a model to hypothesize scene structure without direct supervision. Although we train a network with stereo pairs, we only require a single image at test time to hypothesize disparity or depth. We propose a novel objective function that exploits the bilateral cyclic relationship between the left and right disparities and we introduce an adaptive regularization scheme that allows the network to handle both the co-visible and occluded regions in a stereo pair. This process ultimately produces a model to generate hypotheses for the 3-dimensional structure of the scene as viewed in a single image. When used to generate a single (most probable) estimate of depth, our method outperforms state-of-the-art unsupervised monocular depth prediction methods on the KITTI benchmarks. We show that our method generalizes well by applying our models trained on KITTI to the Make3d dataset.

Citations (86)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.