Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DSPG: Decentralized Simultaneous Perturbations Gradient Descent Scheme (1903.07050v2)

Published 17 Mar 2019 in math.OC, cs.LG, and stat.ML

Abstract: Distributed descent-based methods are an essential toolset to solving optimization problems in multi-agent system scenarios. Here the agents seek to optimize a global objective function through mutual cooperation. Oftentimes, cooperation is achieved over a wireless communication network that is prone to delays and errors. There are many scenarios wherein the objective function is either non-differentiable or merely observable. In this paper, we present a cross-entropy based distributed stochastic approximation algorithm (SA) that finds a minimum of the objective, using only samples. We call this algorithm Decentralized Simultaneous Perturbation Stochastic Gradient, with Constant Sensitivity Parameters (DSPG). This algorithm is a two fold improvement over the classic Simultaneous Perturbation Stochastic Approximations (SPSA) algorithm. Specifically, DSPG allows for (i) the use of old information from other agents and (ii) easy implementation through the use simple hyper-parameter choices. We analyze the biases and variances that arise due to these two allowances. We show that the biases due to communication delays can be countered by a careful choice of algorithm hyper-parameters. The variance of the gradient estimator and its effect on the rate of convergence is studied. We present numerical results supporting our theory. Finally, we discuss an application to the stochastic consensus problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)