Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: beyond the affine case (1903.06520v2)

Published 15 Mar 2019 in math.NA and cs.NA

Abstract: We consider a linear elliptic partial differential equation (PDE) with a generic uniformly bounded parametric coefficient. The solution to this PDE problem is approximated in the framework of stochastic Galerkin finite element methods. We perform a posteriori error analysis of Galerkin approximations and derive a reliable and efficient estimate for the energy error in these approximations. Practical versions of this error estimate are discussed and tested numerically for a model problem with non-affine parametric representation of the coefficient. Furthermore, we use the error reduction indicators derived from spatial and parametric error estimators to guide an adaptive solution algorithm for the given parametric PDE problem. The performance of the adaptive algorithm is tested numerically for model problems with two different non-affine parametric representations of the coefficient.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)