Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving Neural Architecture Search Image Classifiers via Ensemble Learning (1903.06236v1)

Published 14 Mar 2019 in cs.LG and stat.ML

Abstract: Finding the best neural network architecture requires significant time, resources, and human expertise. These challenges are partially addressed by neural architecture search (NAS) which is able to find the best convolutional layer or cell that is then used as a building block for the network. However, once a good building block is found, manual design is still required to assemble the final architecture as a combination of multiple blocks under a predefined parameter budget constraint. A common solution is to stack these blocks into a single tower and adjust the width and depth to fill the parameter budget. However, these single tower architectures may not be optimal. Instead, in this paper we present the AdaNAS algorithm, that uses ensemble techniques to compose a neural network as an ensemble of smaller networks automatically. Additionally, we introduce a novel technique based on knowledge distillation to iteratively train the smaller networks using the previous ensemble as a teacher. Our experiments demonstrate that ensembles of networks improve accuracy upon a single neural network while keeping the same number of parameters. Our models achieve comparable results with the state-of-the-art on CIFAR-10 and sets a new state-of-the-art on CIFAR-100.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.